Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 596
Filtrar
1.
Ecotoxicol Environ Saf ; 275: 116271, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564868

RESUMO

BACKGROUND: As emerging environmental contaminants, antibiotics pose potential threats to human health, in particular to pregnant women and infants. However, the potential harm of inadvertent antibiotic exposure (IAE) is often disregarded in light of the focus on intentional antibiotic use during pregnancy. Currently, little is known about the effects of IAE during pregnancy on fetal neural tube development. METHODS: In this case-control study, we used questionnaire data from 855 subjects to investigate the effects of intentional antibiotic use in early pregnancy on neural tube defects (NTDs). Then we tested for placental antibiotics in mothers who had not intentionally used antibiotics, and the compounds were detected in 379 subjects; these were considered IAE cases. We assessed the association between IAE during pregnancy and fetal NTDs using both multivariable logistic and multi-pollutant exposure models. We also analyzed the correlation between maternal dietary habits and placental antibiotics to explore possible sources of IAE. RESULTS: Only 50 of 855 participants (5.8%) intentionally used antibiotics and such use showed no significant association with NTD risk (odds ratio [OR] = 1.92, confidence interval [95%CI] = [0.66, 5.59]). However, 14 of 15 placental antibiotics were detected in 378 of 379 subjects (99.7%) and multivariable logistic analysis indicated that high levels of placental macrolides were significantly associated with increased NTD risk (4.42 [2.01-10.45]). Multi-pollutant exposure analysis suggested an increase in NTD risk with an increase in exposure to a mixture of placental antibiotics, among which macrolides were the most important contributor. In addition, the level of placental macrolides was positively correlated with the intake frequency of milk. Finally, mothers who drank river, well, or pond water had higher levels of placental macrolides than those who drank only tap water. CONCLUSIONS: Intentional antibiotic use during early pregnancy may not be associated with NTDs, while IAE during pregnancy is associated with higher NTD risk in offspring. Macrolides are crucial risk factors. Milk, and river, well, or pond water may be important sources of IAE.


Assuntos
Poluentes Ambientais , Defeitos do Tubo Neural , Lactente , Humanos , Feminino , Gravidez , Estudos de Casos e Controles , Antibacterianos/efeitos adversos , Placenta , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/epidemiologia , Fatores de Risco , Macrolídeos/efeitos adversos , Água
2.
J Transl Med ; 22(1): 257, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461288

RESUMO

BACKGROUND: Neural Tube Defects (NTDs) are congenital malformations of the central nervous system resulting from the incomplete closure of the neural tube during early embryonic development. Neuroinflammation refers to the inflammatory response in the nervous system, typically resulting from damage to neural tissue. Immune-related processes have been identified in NTDs, however, the detailed relationship and underlying mechanisms between neuroinflammation and NTDs remain largely unclear. In this study, we utilized integrated multi-omics analysis to explore the role of neuroinflammation in NTDs and identify potential prenatal diagnostic markers using a murine model. METHODS: Nine public datasets from Gene Expression Omnibus (GEO) and ArrayExpress were mined using integrated multi-omics analysis to characterize the molecular landscape associated with neuroinflammation in NTDs. Special attention was given to the involvement of macrophages in neuroinflammation within amniotic fluid, as well as the dynamics of macrophage polarization and their interactions with neural cells at single-cell resolution. We also used qPCR assay to validate the key TFs and candidate prenatal diagnostic genes identified through the integrated analysis in a retinoic acid-induced NTDs mouse model. RESULTS: Our analysis indicated that neuroinflammation is a critical pathological feature of NTDs, regulated both transcriptionally and epigenetically within central nervous system tissues. Key alterations in gene expression and pathways highlighted the crucial role of STATs molecules in the JAK-STAT signaling pathway in regulating NTDs-associated neuroinflammation. Furthermore, single-cell resolution analysis revealed significant polarization of macrophages and their interaction with neural cells in amniotic fluid, underscoring their central role in mediating neuroinflammation associated with NTDs. Finally, we identified a set of six potential prenatal diagnostic genes, including FABP7, CRMP1, SCG3, SLC16A10, RNASE6 and RNASE1, which were subsequently validated in a murine NTDs model, indicating their promise as prospective markers for prenatal diagnosis of NTDs. CONCLUSIONS: Our study emphasizes the pivotal role of neuroinflammation in the progression of NTDs and underlines the potential of specific inflammatory and neural markers as novel prenatal diagnostic tools. These findings provide important clues for further understanding the underlying mechanisms between neuroinflammation and NTDs, and offer valuable insights for the future development of prenatal diagnostics.


Assuntos
Multiômica , Defeitos do Tubo Neural , Gravidez , Feminino , Animais , Camundongos , Doenças Neuroinflamatórias , Estudos Prospectivos , Defeitos do Tubo Neural/diagnóstico , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/induzido quimicamente , Sistema Nervoso Central/patologia
3.
Food Chem Toxicol ; 186: 114538, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387523

RESUMO

Arsenic exposure is a significant risk factor for folate-resistant neural tube defects (NTDs), but the potential mechanism is unclear. In this study, a mouse model of arsenic-induced NTDs was established to investigate how arsenic affects early neurogenesis leading to malformations. The results showed that in utero exposure to arsenic caused a decline in the normal embryos, an elevated embryo resorption, and a higher incidence of malformed embryos. Cranial and spinal deformities were the main malformation phenotypes observed. Meanwhile, arsenic-induced NTDs were accompanied by an oxidant/antioxidant imbalance manifested by elevated levels of reactive oxygen species (ROS) and decreased antioxidant activities. In addition, changes in the expression of autophagy-related genes and proteins (ULK1, Atg5, LC3B, p62) as well as an increase in autophagosomes were observed in arsenic-induced aberrant brain vesicles. Also, the components of the upstream pathway regulating autophagy (AMPK, PKB, mTOR, Raptor) were altered accordingly after arsenic exposure. Collectively, our findings propose a mechanism for arsenic-induced NTDs involving AMPK/PKB-mTORC1-mediated autophagy. Blocking autophagic cell death due to excessive autophagy provides a novel strategy for the prevention of folate-resistant NTDs, especially for arsenic-exposed populations.


Assuntos
Arsênio , Defeitos do Tubo Neural , Camundongos , Animais , Arsênio/toxicidade , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Antioxidantes , Tubo Neural/metabolismo , Autofagia/fisiologia , Ácido Fólico/efeitos adversos , Defeitos do Tubo Neural/induzido quimicamente
4.
AIDS ; 38(4): 439-446, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37382903

RESUMO

OBJECTIVES: In 2018, the Botswana Tsepamo Study reported a nine-fold increased risk of neural tube defects in infants whose mothers were treated with dolutegravir (DTG) from the time of conception. As maternal folate supplementation and status is a well known modifier of neural tube defect (NTD) risk, we sought to evaluate birth outcomes in mice fed normal and low folic acid diets treated with DTG during pregnancy. DESIGN: DTG was evaluated for developmental toxicity using pregnant mice fed normal or low folic acid diet. METHODS: CD-1 mice were provided diet with normal (3 mg/kg) or low (0.3 mg/kg) folic acid. They were treated with water, a human therapeutic-equivalent dose, or supratherapeutic dose of DTG from mouse embryonic day E6.5 to E12.5. Pregnant dams were sacrificed at term (E18.5) and fetuses were inspected for gross, internal, and skeletal defects. RESULTS: Fetuses with exencephaly, an NTD, were present in both therapeutic human equivalent and supratherapeutic exposures in dams fed low folic acid diet. Cleft palates were also found under both folate conditions. CONCLUSIONS: Recommended dietary folic acid levels during mouse pregnancy ameliorate developmental defects that arise from DTG exposure. Since low folate status in mice exposed to DTG increases the risk for NTDs, it is possible that DTG exposures in people living with HIV with low folate status during pregnancy may explain, at least in part, the elevated NTD risk signal observed in Botswana. Based on these results, future studies should consider folate status as a modifier for DTG-associated NTD risk.


Assuntos
Infecções por HIV , Defeitos do Tubo Neural , Oxazinas , Piperazinas , Piridonas , Humanos , Gravidez , Feminino , Animais , Camundongos , Ácido Fólico/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/complicações , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/tratamento farmacológico , Compostos Heterocíclicos com 3 Anéis/efeitos adversos
5.
Microsc Res Tech ; 87(3): 506-515, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37933747

RESUMO

Sugammadex is a new generation drug that has led to significant changes in the practice of anesthesia. However, its effects on fetal development are not yet fully known. The aim of this study is to investigate the teratogenic effects of sugammadex on neural tube and embryonic development in early chick embryos. In this study, 50 0-day fertile specific non-pathogenic (SPF) eggs were used. Fifty eggs were divided into 5 different groups, each consisting of 10 pieces. While no substance was given to the control group at the 28th hour of the study, 4 different doses of sugammadex were administered to the experimental groups, respectively 2, 4, 8, 16 mg/kg. Cranio-caudal lengths of embryos, somite numbers, average number of argyrophilic nucleolar regulatory regions (AgNOR) per nucleus, total AgNOR area/total nuclear area (TAA/NA) ratios, Caspase-3 H-Score results, and presence of neural tube defect were compared among the groups. While the mean cranio-caudal lengths, somite counts, TAA/NA ratios and AgNOR counts of the embryos were found to be statistically significantly lower than the control group, Caspase-3 H-Score mean results were found to be significantly higher (p < .05). In addition, it was observed that there was an increase in neural tube patency and developmental delay. As a result, sugammadex crossing the placenta was revealed to increase the release of proapopitotic molecules and disrupt the developmental stages of embryos. Thus, it was determined that sugammadex in increased developmental delay and incidence of neural tube defects in early chick embryos with increased dose dependent. Despite these results, the effects of sugammadex on fetal development in in vivo and in vitro environments should be studied with further studies. RESEARCH HIGHLIGHTS: Sugammadex is a new generation drug that has led to significant changes in the practice of anesthesia. However, its effects on fetal development are not yet fully known. It has been observed that different doses of sugammadex increase the risk of neural tube defect development on chick embryos and slow the embryo development in a dose-dependent manner.


Assuntos
Defeitos do Tubo Neural , Tubo Neural , Animais , Embrião de Galinha , Tubo Neural/patologia , Caspase 3 , Sugammadex/farmacologia , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/patologia , Desenvolvimento Embrionário
6.
Sci Total Environ ; 913: 169317, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38104833

RESUMO

Exposure to pesticides during pregnancy has been associated with several serious congenital malformations, such as neural tube defects, therefore, is a cause for concern in terms of human health. This review aims to gather information related to maternal exposure during pregnancy and the risk of triggering neural tube defects in the offspring. The search strategy for the studies followed the PRISMA guidelines. We conducted a systematic search in the Science Direct, PubMed, Cochrane Library, Embase, Scopus, and Web of Science databases for all epidemiological studies that sought to associate exposure to pesticides during embryonic development with the risk of neural tube defects (NTDs). The keywords used were "pesticide", "herbicide", "congenital" and "neural". Of the 229 articles, 8 eligible ones (7 case-control and 1 cross-sectional) evaluated pesticide exposure in pregnancy. Different methods were used, including analysis of biological samples and questionnaires. The pesticides studied included insecticides, herbicides, fungicides, and nematicides. Insecticides were the most studied, with variations in concentrations between tissues and studies. Distinct levels of pesticides have been detected in maternal serum, placenta, and umbilical cord. Models were statistically adjusted for confounding factors, such as smoking and dietary supplement intakes. Concentrations were measured in different exposure windows (periconception and prenatal), related to NTDs such as anencephaly and spina bifida. Different data collection techniques, types of biological samples, and exposure windows were used, which made comparison difficult. The main pesticides studied included DDT, DDE, HCH, and endosulfan. Maternal serum showed the highest concentrations of pesticides, but detection in placental tissue and umbilical cord confirms embryonic exposure. Confounding variables were adjusted for in the analysis of the articles, but they may still contribute to the risk of NTDs. All the studies analyzed pesticide exposure and the relationship with NTDs. However, a more standardized survey would be ideal for better comparisons.


Assuntos
Herbicidas , Inseticidas , Defeitos do Tubo Neural , Praguicidas , Feminino , Humanos , Gravidez , Praguicidas/toxicidade , Praguicidas/análise , Estudos Transversais , Placenta/química , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/epidemiologia , Fatores de Risco
7.
J Environ Sci (China) ; 138: 572-584, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135421

RESUMO

Birth defects have become a public health concern. The hazardous environmental factors exposure to embryos could increase the risk of birth defects. Cadmium, a toxic environmental factor, can cross the placental barrier during pregnancy. Pregnant woman may be subjected to cadmium before taking precautionary protective actions. However, the link between birth defects and cadmium remains obscure. Cadmium exposure can induce excessive apoptosis in neuroepithelium during embryonic development progresses. Cadmium exposure activated the p53 via enhancing the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and reactive oxygen species' (ROS) level. And cadmium decreases the level of Paired box 3 (Pax3) and murine double minute 2 (Mdm2), disrupting the process of p53 ubiquitylation. And p53 accumulation induced excessive apoptosis in neuroepithelium during embryonic development progresses. Excessive apoptosis led to the failure of neural tube closure. The study emphasizes that environmental materials may increase the health risk for embryos. Cadmium caused the failure of neural tube closure during early embryotic day. Pregnant women may be exposed by cadmium before taking precautionary protective actions, because of cadmium concentration-containing foods and environmental tobacco smoking. This suggests that prenatal cadmium exposure is a threatening risk factor for birth defects.


Assuntos
Defeitos do Tubo Neural , Feminino , Gravidez , Humanos , Animais , Camundongos , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Tubo Neural/metabolismo , Fator de Transcrição PAX3/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Placenta/metabolismo , Apoptose
8.
Acta Biochim Biophys Sin (Shanghai) ; 56(1): 23-33, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062774

RESUMO

Neural tube defects (NTDs) represent a developmental disorder of the nervous system that can lead to significant disability in children and impose substantial social burdens. Valproic acid (VPA), a widely prescribed first-line antiepileptic drug for epilepsy and various neurological conditions, has been associated with a 4-fold increase in the risk of NTDs when used during pregnancy. Consequently, urgent efforts are required to identify innovative prevention and treatment approaches for VPA-induced NTDs. Studies have demonstrated that the disruption in the delicate balance between cell proliferation and apoptosis is a crucial factor contributing to NTDs induced by VPA. Encouragingly, our current data reveal that melatonin (MT) significantly inhibits apoptosis while promoting the restoration of neuroepithelial cell proliferation impaired by VPA. Moreover, further investigations demonstrate that MT substantially reduces the incidence of neural tube malformations resulted from VPA exposure, primarily by suppressing apoptosis through the modulation of intracellular reactive oxygen species levels. In addition, the Src/PI3K/ERK signaling pathway appears to play a pivotal role in VPA-induced NTDs, with significant inhibition observed in the affected samples. Notably, MT treatment successfully reinstates Src/PI3K/ERK signaling, thereby offering a potential underlying mechanism for the protective effects of MT against VPA-induced NTDs. In summary, our current study substantiates the considerable protective potential of MT in mitigating VPA-triggered NTDs, thereby offering valuable strategies for the clinical management of VPA-related birth defects.


Assuntos
Melatonina , Defeitos do Tubo Neural , Gravidez , Feminino , Criança , Humanos , Ácido Valproico , Melatonina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/prevenção & controle , Estresse Oxidativo , Transdução de Sinais
9.
Fish Physiol Biochem ; 49(6): 1357-1379, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37982970

RESUMO

Neural tube defects are severe congenital disorders of the central nervous system that originate during embryonic development when the neural tube fails to close completely. It affects one to two infants per 1000 births. The aetiology is multifactorial with contributions from both genetic and environmental factors. Dysregulated epigenetic mechanisms, in particular the abnormal genome-wide methylation during embryogenesis, have been linked to developmental abnormalities including neural tube defects. The current study investigated the influence of decitabine (DCT), a DNA methylation inhibitor, on embryonic development in zebrafish, with a focus on neural tube formation. The developing zebrafish embryos were exposed to graded concentrations of decitabine (from 13.69 µM to 1 mM) before the onset of neurulation. The developmental process was monitored at regular time intervals post fertilization. At 120 h post fertilization, the developing embryos were inspected individually to determine the incidence and severity of neural tube defects. Using alizarin red staining, the cranial and caudal neural tube morphology was examined in formaldehyde fixed larvae. Anomalies in neural tube and somite development, as well as a delay in hatching, were discovered at an early stage of development. As development continued, neural tube defects became increasingly evident, and there was a concentration-dependent rise in the prevalence and severity of various neural tube defects. 90% of growing embryos in the group exposed to decitabine 1 mM had multiple neural tube malformations, and 10% had isolated neural tube defects. With several abnormalities, the caudal region of the neural tube was seriously compromised. The histopathological studies supported the malformations in neural tube. Our study revealed the harmful impact of decitabine on the development of the neural tube in growing zebrafish. Moreover, these findings support the hypothesis that the hypomethylation during embryonic development causes neural tube defects.


Assuntos
Defeitos do Tubo Neural , Peixe-Zebra , Humanos , Gravidez , Feminino , Animais , Decitabina/toxicidade , Defeitos do Tubo Neural/induzido quimicamente , Sistema Nervoso Central , Metilação de DNA , Tubo Neural
10.
Environ Health Perspect ; 131(8): 86002, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37647124

RESUMO

BACKGROUND: Neural tube defects (NTDs) affect >300,000 pregnancies worldwide annually. Few nongenetic factors, other than folate deficiency, have been identified that may provide intervenable solutions to reduce the burden of NTDs. Prenatal exposure to toxic metals [arsenic (As), cadmium (Cd), mercury (Hg), manganese (Mn) and lead (Pb)] may increase the risk of NTDs. Although a growing epidemiologic literature has examined associations, to our knowledge no systematic review has been conducted to date. OBJECTIVE: Through adaptation of the Navigation Guide systematic review methodology, we aimed to answer the question "does exposure to As, Cd, Hg, Mn, or Pb during gestation increase the risk of NTDs?" and to assess challenges to evaluating this question given the current evidence. METHODS: We selected available evidence on prenatal As, Cd, Hg, Mn, or Pb exposure and risk of specific NTDs (e.g., spina bifida, anencephaly) or all NTDs via a comprehensive search across MEDLINE, Embase, Web of Science, and TOXLINE databases and applied inclusion/exclusion criteria. We rated the quality and strength of the evidence for each metal. We applied a customized risk of bias protocol and evaluated the sufficiency of evidence of an effect of each metal on NTDs. RESULTS: We identified 30 studies that met our criteria. Risk of bias for confounding and selection was high in most studies, but low for missing data. We determined that, although the evidence was limited, the literature supported an association between prenatal exposure to Hg or Mn and increased risk of NTDs. For the remaining metals, the evidence was inadequate to establish or rule out an effect. CONCLUSION: The role of gestational As, Cd, or Pb exposure in the etiology of NTDs remains unclear and warrants further investigation in high-quality studies, with a particular focus on controlling confounding, mitigating selection bias, and improving exposure assessment. https://doi.org/10.1289/EHP11872.


Assuntos
Arsênio , Mercúrio , Defeitos do Tubo Neural , Efeitos Tardios da Exposição Pré-Natal , Feminino , Gravidez , Humanos , Cádmio , Chumbo/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/epidemiologia , Manganês
11.
Cells ; 12(13)2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37443734

RESUMO

Neural tube defects (NTDs), including anencephaly and spina bifida, are common major malformations of fetal development resulting from incomplete closure of the neural tube. These conditions lead to either universal death (anencephaly) or severe lifelong complications (spina bifida). Despite hundreds of genetic mouse models of neural tube defect phenotypes, the genetics of human NTDs are poorly understood. Furthermore, pharmaceuticals, such as antiseizure medications, have been found clinically to increase the risk of NTDs when administered during pregnancy. Therefore, a model that recapitulates human neurodevelopment would be of immense benefit to understand the genetics underlying NTDs and identify teratogenic mechanisms. Using our self-organizing single rosette cortical organoid (SOSR-COs) system, we have developed a high-throughput image analysis pipeline for evaluating the SOSR-CO structure for NTD-like phenotypes. Similar to small molecule inhibition of apical constriction, the antiseizure medication valproic acid (VPA), a known cause of NTDs, increases the apical lumen size and apical cell surface area in a dose-responsive manner. GSK3ß and HDAC inhibitors caused similar lumen expansion; however, RNA sequencing suggests VPA does not inhibit GSK3ß at these concentrations. The knockout of SHROOM3, a well-known NTD-related gene, also caused expansion of the lumen, as well as reduced f-actin polarization. The increased lumen sizes were caused by reduced cell apical constriction, suggesting that impingement of this process is a shared mechanism for VPA treatment and SHROOM3-KO, two well-known causes of NTDs. Our system allows the rapid identification of NTD-like phenotypes for both compounds and genetic variants and should prove useful for understanding specific NTD mechanisms and predicting drug teratogenicity.


Assuntos
Anencefalia , Defeitos do Tubo Neural , Disrafismo Espinal , Gravidez , Feminino , Humanos , Camundongos , Animais , Ácido Valproico/farmacologia , Anencefalia/complicações , Anencefalia/genética , Glicogênio Sintase Quinase 3 beta/genética , Camundongos Knockout , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/genética , Disrafismo Espinal/genética , Encéfalo/patologia , Proteínas dos Microfilamentos
12.
Lancet HIV ; 10(9): e588-e596, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37506721

RESUMO

BACKGROUND: A study from Botswana identified an increased risk of neural tube defects (NTDs) in infants of mothers with HIV who were treated with dolutegravir around the time of conception. We aimed to examine associations of dolutegravir use with NTDs and pregnancy loss using large health-care claims databases from the USA, a country with folic acid fortification of food. METHODS: In this cohort study, we analysed health-care claims data, recorded in the Merative MarketScan commercial database (MarketScan data) and Centers for Medicare & Medicaid Services Medicaid database (Medicaid data) from Jan 1, 2008, to Dec 31, 2020. We identified pregnancies with enrolment during their entire duration among women aged 15-49 years and we estimated time of conception. For each pregnancy, we determined HIV status and periconceptional exposure to dolutegravir or other antiretroviral agents. We estimated and compared the incidence rate of NTDs, stillbirths, and pregnancy loss (ie, spontaneous or induced abortions) by type of periconceptional antiretroviral exposure. We calculated adjusted risk ratios of the adverse outcomes using Poisson models adjusting for demographic and clinical factors. FINDINGS: Of 4 489 315 pregnancies in MarketScan data and 14 405 861 pregnancies in Medicaid data that had full enrolment, we identified 69 pregnancies in MarketScan data and 993 pregnancies in Medicaid data that were associated with HIV and periconceptional dolutegravir exposure. For women without HIV, the NTD rate was 4·1 per 10 000 live births (95% CI 3·9-4·3) in MarketScan and 5·7 per 10 000 live births (5·6-5·8) in Medicaid. No NTD cases were found among those with dolutegravir or non- dolutegravir antiretroviral drug exposure in the MarketScan data; only one NTD case was identified among women with dolutegravir, and three among women with non-dolutegravir antiretroviral exposure in Medicaid. After adjusting for covariates, there were no significant differences in risk ratios of NTD between groups with periconceptional dolutegravir or non-dolutegravir antiretroviral exposure and the group without HIV. However, compared with women without HIV, the risk of pregnancy loss was higher among women exposed to antiretroviral therapy: for dolutegravir exposure the adjusted risk ratio was 1·73 (95% CI 1·20-2·49) in MarketScan data and 1·41 (1·30-1·54) in Medicaid data; for non-dolutegravir antiretroviral exposure the adjusted risk ratio was 1·23 (1·10-1·37) in MarketScan data and 1·11 (1·07-1·15) in Medicaid data. INTERPRETATION: We studied the largest US cohort of women with periconceptional or early-pregnancy dolutegravir exposure. Our results do not show an increased risk of NTDs in exposed infants in the USA. Administrative databases can be used, with rigorous methodology, to study correlates of rare outcomes, such as NTDs, and to monitor for adverse pregnancy outcomes in women who receive antiretrovirals. FUNDING: US Centers for Disease Control and Prevention.


Assuntos
Aborto Espontâneo , Infecções por HIV , Defeitos do Tubo Neural , Idoso , Gravidez , Lactente , Feminino , Estados Unidos/epidemiologia , Humanos , Resultado da Gravidez , Estudos de Coortes , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Medicare , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/epidemiologia , Antirretrovirais/uso terapêutico
13.
Sci Total Environ ; 900: 165586, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474044

RESUMO

Bisphenol A (BPA) and its analogs such as bisphenol Z (BPZ) are widely used in the production of consumer products, but few studies have investigated the associations among BPA, its analogs, and chlorinated derivatives (collectively, BPs) and risk for NTDs. This study investigated the associations between concentrations of BPs in the placenta and risk for NTDs. This was a case-control study including 122 NTDs and 164 controls. BPs in the placenta were determined using liquid chromatography-tandem mass spectrometry. The associations between BPs and NTD risk were evaluated using conventional logistic regression and weighted quantile sum regression (WQS) models. In the logistic regression, exposure to higher levels of BPA and BPZ was associated with increased NTD risk (odds ratio [OR] = 3.17, 95 % confidence interval [CI], 1.22-8.22; OR = 3.11, 95 % CI, 1.20-8.09, respectively). Meanwhile, a significant dose-response relationship was found between BPA and BPZ concentrations and NTD risk. In the WQS model, a quartile increase in WQS index resulted in 4.34 (95 % CI: 1.69, 11.20) higher odds for NTDs, and BPA and BPZ accounted for most of the weight index in the joint effects of BPs. In conclusion, high levels of BPs in the placenta are associated with increased risk for NTDs, of which BPA and BPZ are important risk factors.


Assuntos
Defeitos do Tubo Neural , Fenóis , Gravidez , Feminino , Humanos , Estudos de Casos e Controles , Fenóis/análise , Compostos Benzidrílicos/análise , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/epidemiologia , Placenta/química
14.
Turk Neurosurg ; 33(6): 1012-1016, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37309631

RESUMO

AIM: To investigate the effect of zinc oxide nanoparticles (ZnO-NPs) on neural tube development in early chicken embryos. MATERIAL AND METHODS: Fifty pathogen-free fertilized eggs were initially incubated for thirty hours. The eggs were divided into 5 groups. In the control group (C) the egg?s apex was opened and closed without any administration. In the distilled water group (DW), 10 microliters of distilled water were injected into the sub-blastodermic area. ZnO-NP suspensions were prepared in distilled water and injected sub-blastodermically into the low, medium and high dose ZnO-NP groups (10 mg/kg, 30 mg/kg, and 50 mg/kg, respectively). Incubation was completed in 72 hours, and embryological and neural tube development was evaluated histologically with a light microscope. RESULTS: Embryos in all groups were evaluated according to the Hamburger-Hamilton (HH) staging. It was observed that the staging progressed by the developmental process between 68-72 hours, which is equivalent to the 19-20th stage of HH. Differentiated otic vesicle, optic cup, lens vesicle, pharynx, and Rathke?s pouch were all observed in embryo sections. Both forebrain and hindbrain vesicles were easily distinguished in the sections by cranial flexion. Neural tube closure defect was not detected in any of the groups. CONCLUSION: In our observations, ZnO-NPs did not affect neural tube development at the applied dose ranges. We believe that additional studies with higher doses using a higher number of subjects will help clarify the conflicting data in the literature.


Assuntos
Defeitos do Tubo Neural , Óxido de Zinco , Animais , Embrião de Galinha , Humanos , Galinhas , Óxido de Zinco/toxicidade , Tubo Neural , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/patologia , Água/farmacologia
15.
Int J Dev Neurosci ; 83(5): 417-430, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37211717

RESUMO

Neural tube defects (NTDs) are severe congenital malformations that can lead to lifelong disability. Wuzi Yanzong Pill (WYP) is an herbal formula of traditional Chinese medicine (TCM) that has been shown to have a protective effect against NTDs in a rodent model induced by all-trans retinoic acid (atRA), but the mechanism remains unclear. In this study, the neuroprotective effect and mechanism of WYP on NTDs were investigated in vivo using an atRA-induced mouse model and in vitro using cell injury model induced by atRA in Chinese hamster ovary (CHO) cells and Chinese hamster dihydrofolate reductase-deficient (CHO/dhFr) cells. Our findings suggest that WYP has an excellent preventive effect on atRA-induced NTDs in mouse embryos, which may be related to the activation of the PI3K/Akt signaling pathway, improved embryonic antioxidant capacity, and anti-apoptotic effects, and this effect is not dependent on folic acid (FA). Our results demonstrated that WYP significantly reduced the incidence of NTDs induced by atRA; increased the activity of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and content of glutathione (GSH); decreased the apoptosis of neural tube cells; up-regulated the expression of phosphatidylinositol 3 kinase (PI3K), phospho protein kinase B (p-Akt), nuclear factor erythroid-2 related factor (Nrf2), and b-cell lymphoma-2 (Bcl-2); and down-regulated the expression of bcl-2-associated X protein (Bax). Our in vitro studies suggested that the preventive effect of WYP on atRA-treated NTDs was independent of FA, which might be attributed to the herbal ingredients of WYP. The results suggest that WYP had an excellent prevention effect on atRA-induced NTDs mouse embryos, which may be independent of FA but related to the activation of the PI3K/Akt signaling pathway and improvement of embryonic antioxidant capacity and anti-apoptosis.


Assuntos
Defeitos do Tubo Neural , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Cricetinae , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Células CHO , Cricetulus , Transdução de Sinais , Tretinoína/farmacologia , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/prevenção & controle , Estresse Oxidativo
16.
J Ethnopharmacol ; 313: 116540, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37088238

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Wuzi Yanzong Pill (WYP) is a classic traditional Chinese medicine (TCM) formula that is used for reproductive system diseases. Previous studies showed that WYP had a preventive effect on the development of neural tube defects (NTDs) induced by all-trans retinoic acid (atRA) in mice. AIM OF THE STUDY: This study aimed to determine the optimal combination of main monomer components in WYP on preventing NTDs and to understand the underlying mechanism. MATERIALS AND METHODS: An optimal combination was made from five representative components in WYP including hyperoside, acteoside, schizandrol A, kaempferide and ellagic acid by orthogonal design method. In a mouse model of NTDs induced by intraperitoneal injection of atRA, pathological changes of neural tube tissues were observed by Hematoxylin & Eosin (HE) staining, neural tube epithelial cells apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), protein changes related to apoptosis, anti-apoptosis, and antioxidant factors were detected with Western blot. Potential targets and mechanisms of monomer compatibility group (MCG) acting on NTDs were analyzed by bioinformatics. RESULTS: Treatment with different combinations of WYP bioactive ingredients resulted in varying decreases in the incidence of NTDs in mice embryos. The combination of MCG15 (200 mg/kg of hyperoside, 100 mg/kg of acteoside, 10 mg/kg of schizandrol A, 100 mg/kg of kaempferide and 1 mg/kg of ellagic acid) showed the most significant reduction in NTD incidence. Mechanistically, MCG15 inhibited apoptosis and oxidative stress, as evidenced by reduced TUNEL-positive cells, downregulation of caspase-9, cleaved caspase-3, Bad, and Bax, and upregulation of Bcl-2, as well as decreased MDA and increased SOD, CAT, GSH, HO-1, and GPX1 levels. Bioinformatics analysis showed that MCG15 acted on the PI3K/Akt signaling pathway, which was confirmed by Western blot analysis showing increased expression of p-PI3K, p-Akt/Akt, and Nrf2 related indicators. CONCLUSION: We have identified an optimal combination of five bioactive components in WYP (MCG15) that prevented NTDs in mice embryos induced by atRA by activating the PI3K/Akt signaling pathway and inhibiting apoptosis and oxidative stress.


Assuntos
Defeitos do Tubo Neural , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ácido Elágico/farmacologia , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/prevenção & controle , Defeitos do Tubo Neural/metabolismo , Estresse Oxidativo , Tretinoína/efeitos adversos , Tretinoína/metabolismo
17.
Ecotoxicol Environ Saf ; 255: 114815, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36948008

RESUMO

Metallic elements play a pivotal role in maternal and fetal health. Metals can cross the placental barrier and be absorbed by fetuses, where they may affect closure of the neural tube during embryonic development. Neural tube defects (NTDs), which result from aberrant closure of the neural tube three to four weeks post-conception, have a multifactorial and complex etiology that combines genetic variants and environmental exposure. Recent advances in population-level association studies have investigated the link between maternal environmental exposure and NTDs, particularly the influence of metals on the incidence of NTDs. Herein, we present a broad and qualitative review of current literature on the association between maternal and prenatal metal exposure via the maternal peripheral blood, amniotic fluid, placenta, umbilical cord, and maternal hair, and the risk of developing NTDs. Specifically, we identify the various aggravating or attenuating effects of metallic exposure on the risk of NTD formation. This review provides novel insights into the association between environmental metals and NTDs and has important applications for NTD prevention and mitigating environmental exposure to metals.


Assuntos
Defeitos do Tubo Neural , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Gravidez , Placenta , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/epidemiologia , Defeitos do Tubo Neural/genética , Tubo Neural , Feto
18.
Brain ; 146(8): 3455-3469, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36928982

RESUMO

Neural tube defects are the most severe congenital malformations that result from failure of neural tube closure during early embryonic development, and the underlying molecular mechanisms remain elusive. Retinoic acid, an active derivative of vitamin A, is critical for neural system development, and retinoic acid receptor (RAR) signalling malfunctions have been observed in human neural tube defects. However, retinoic acid-retinoic acid receptor signalling regulation and mechanisms in neural tube defects are not fully understood. The mRNA expression of RARs and retinoid X receptors in the different human neural tube defect phenotypes, including 11 pairs of anencephaly foetuses, 10 pairs of hydrocephalus foetuses and nine pairs of encephalocele foetuses, was investigated by NanoString nCounter technology. Immunoprecipitation-mass spectrometry was performed to screen the potential interacting targets of retinoic acid receptor γ. The interactions between proteins were confirmed by co-immunoprecipitation and immunofluorescence laser confocal microscopy. Luciferase and chromatin immunoprecipitation with quantitative real-time polymerase chain reaction assays were used to clarify the underlying mechanism. Moreover, a neural tube defect animal model, constructed using excess retinoic acid, was used for further analysis with established molecular biology technologies. We report that level of retinoic acid receptor γ (RARγ) mRNA was significantly upregulated in the brain tissues of human foetuses with anencephaly. To further understand the actions of retinoic acid receptor γ in neural tube defects, methylenetetrahydrofolate dehydrogenase 1 was identified as a specific retinoic acid receptor γ target from IP-MS screening. Additionally, methylenetetrahydrofolate dehydrogenase 1 negatively regulated retinoic acid receptor γ transcription factor activity. Furthermore, low expression of methylenetetrahydrofolate dehydrogenase 1 and activation of retinoic acid receptor signalling were further determined in human anencephaly and a retinoic acid-induced neural tube defect mouse model. This study reveals that methylenetetrahydrofolate dehydrogenase 1, the rate-determining enzyme in the one-carbon cycle, might be a specific regulator of retinoic acid receptors; these findings provide new insights into the functional linkage between nuclear folate metabolism and retinoic acid receptor signalling in neural tube defect pathology.


Assuntos
Anencefalia , Defeitos do Tubo Neural , Camundongos , Gravidez , Animais , Feminino , Humanos , Metilenotetra-Hidrofolato Desidrogenase (NADP)/efeitos adversos , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Tretinoína/efeitos adversos , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , RNA Mensageiro , Antígenos de Histocompatibilidade Menor
19.
Biotech Histochem ; 98(5): 306-313, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36843544

RESUMO

Nausea and vomiting during pregnancy are common problems and prolonged pharmacological treatment often is needed; however, the teratogenic effects of anti-emetic drugs on neural tube (NT) development are not clear. We investigated the effects of different doses of metoclopramide on NT development in 48 and 72 h chick embryos using an argyrophilic nucleolar organizing region (AgNOR) staining method. We used 150 fertile, specific pathogen-free eggs incubated for 28 h, then randomly divided into five equal groups: group A, sham control was administered 0.9% saline; groups B - E were administered 0.15 mg/egg, 0.3 mg/egg, 0.6 mg/egg and 1.2 mg/egg, respectively. Half of the eggs in each group were taken from the incubator at 48 h incubation and the other half at 72 h incubation. After incubation, eggs were opened, embryos were dissected from their membranes, fixed with 10% formalin and examined by light microscopy. The NT status, i.e., open or closed, and somite number, crown-rump length, morphological features and gross developmental abnormalities were recorded. Excised embryos were sectioned and stained using hematoxylin and eosin or the AgNOR procedure and examined for morphology and histopathology. Delayed NT closure was observed in all 48 h drug exposed embryos, but in the 72 h groups, this occurred only in high-dose groups. Somite number was reduced significantly in groups C - E compared to the control group. Crown-rump length was decreased in both 48 and 72 h embryos. We found a decreased total AgNOR area:nuclear area ratio in 48 and 72 h embryos of all experimental groups. We found that metoclopramide delayed NT closure in chick embryos in a dose-dependent manner.


Assuntos
Defeitos do Tubo Neural , Tubo Neural , Animais , Embrião de Galinha , Tubo Neural/patologia , Defeitos do Tubo Neural/induzido quimicamente , Metoclopramida/farmacologia , Desenvolvimento Embrionário
20.
Environ Sci Pollut Res Int ; 30(11): 28925-28934, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36401693

RESUMO

Exposure to copper, silver, and titanium has been reported to be associated with a variety of adverse effects on humans, but it is little focused on the fetus. We investigated the associations between prenatal exposure to the three metals (copper, silver, and titanium) and risk for fetal neural tube defects (NTDs). Placental samples from 408 women with pregnancies affected by NTDs and 593 women with normal pregnancies were collected from 2003 to 2016 in Pingding, Xiyang, Shouyang, Taigu, and Zezhou counties of China. Multilevel mixed-effects logistic regression and Bayesian kernel machine regression (BKMR) were used to evaluate the single and joint effects of the metals on NTDs. Silver was associated with an increased risk for NTDs in a dose-response fashion in single-metal logistic regression, with adjusted odds ratios (95% confidence intervals) of 1.78 (1.04-3.06) and 1.92 (1.11-3.32) in the second and third tertiles, respectively, compared to the lowest tertile. BKMR revealed toxic effects of silver on NTDs and the association appeared to be linear. No interaction of silver with any of the other two metals was observed. Besides, silver concentration was positively correlated with maternal certain dietary intakes. Placental high silver concentrations are associated with an elevated risk for NTDs. Maternal diet may be a source of silver exposure.


Assuntos
Defeitos do Tubo Neural , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Gravidez , Prata , Placenta , Titânio , Cobre , Estudos de Casos e Controles , Teorema de Bayes , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/epidemiologia , Exposição Materna
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...